
 Database Documentation

Contents
Backend I: Excel sheet ... 1

Data input .. 2
6. Colours ... 2
5. Cities .. 2
4. Museums .. 2
3. Museums .. 2
2. Artworks... 3
1. Data .. 3

Backend II: Django [SQL & Python] .. 4
Introduction .. 4
Set-up.. 4

Data-structure .. 4
Data input / Updating the database .. 4
URLs & Views ... 5

Frontend: [HTML, CSS, JS within the Django project] ... 6
Intro ... 6
User interface/website ... 7
Admin .. 7

Using the System Locally .. 8
Terminal ... 8
Text-editor .. 8
Python .. 8
Virtual environment.. 8
Python extensions .. 9
Boot-up ... 9

Hosting/Presentation .. 9
GitHub ... 9
Required python packages .. 9

1

Backend I: Excel sheet

To keep the method for inputting new data as simple and familiar as possible, it was decided to keep using
an excel-file as the functional backend. The original one-sheet excel file was split up into 6 separate sheets,
that mimic the eventual SQLite database behind the website:

1. Data
2. Artworks
3. Artists
4. Museums
5. Cities
6. Colours

Splitting up the data like this makes the sheet more legible. The colour of the columns dictates the
(possible) relationship of a given field to a field in another sheet (Fig.1):

Primary key (PK) A primary key (PK) is used as a unique identifier to quickly parse data within the
table. A table cannot have more than one PK.

A primary key’s main features are:
• It must contain a unique value for each row of data.
• It cannot contain null values.
• Every row must have a PK value.

Foreign key (FK) A foreign key (FK) is a field that refers to the PK in another table. By using an FK,
different tables can be linked to one another.

In this example. The Artworks sheet is linked to the Artists sheet through columns
D and E, that link to the PK (in this case Artist id) in the Artists sheet. Instead of
having to fill in the name ‘Rembrandt’ >200 times we simply input the id
referencing him. The Artists sheet then contains the rest of the relevant
information (birthdate, place of birth etc), which limits cluttering of the Artworks
sheet.

Normal field These are simply normal fields unique to this sheet, and contain information on
the relevant entry.

Fig. 1: Excerpt of the [2. Artworks] input sheet of the excel

2

Data input
To input a new data-entry, we recommend working your way from back to front (starting at sheet 6, ending
at sheet 1). This is to ensure all the FK relationships are set up properly.

6. Colours
Column name Content Styling Required?

id PK. Abbreviation of the colour-name Capitalized., E.g., ‘DBl’ for ‘Dark black’ YES
colour_name First term capitalized. E.g., ‘Dark black’ YES

hex_code Used for making renders on the
front-end.

Standard hex-code formatting. E.g.,
#000000

YES

group Allows for grouping of data by colour
group.

Capitalized. E.g., ‘Black’ YES

Most likely, this sheet of the database will remain untouched. It lists the colour-system devised within the
DttG project, with relevant hex-codes.

5. Cities
Column name Content Styling Required?

city PK. City name. Capitalized. E.g., ‘Rome’ YES
country Allows for grouping of data by

country.
Capitalized. E.g., ‘Italy’ NO

continent Allows for grouping of data by
continent.

Capitalized. E.g., ‘Europe’ NO

latitude Allows for making geographical data
plots. e.g., use https://www.gps-
coordinates.net/

Standard lat/lon formatting with 7
decimals. E.g., 55.6867243

NO
longitude

This table needs to be filled in properly to ensure FK of other sheets can link to it. There’s a high chance
that your desired city is already added to the database. Fields that link to this sheet are the following:

• Museum.city
• Artists.place_of_birth

• Artists.place_of_death
• Artworks.place_of_execution

E.g., you will only be able to enter your artwork’s place of execution if the city is already filled in in the
Cities sheet.

4. Museums
Column name Content Styling Required?

id PK Integer, automatically increments with 1. YES
museum_name Capitalized. E.g., ‘Chatsworth House Trust’ YES

city FK (to Cities.city) Same as linked FK relationship. Capitalized.
E.g., ‘Rome’

NO

website Museum home-page https://example-website.org/ NO

3. Museums
Column name Content Styling Required?

id PK Integer, automatically increments with 1. YES
full_name LAST NAME, First name. E.g., ‘ANTHONISZ, Aert’ YES

other_names LAST NAME, First name | LAST NAME, First name | etc.
(From RKD)

NO

Place_of_birth FK (to Cities.city) Same as linked FK relationship. Capitalized. E.g., ‘Rome’ YES (pick unknown if
Place_of_death FK (to Cities.city) Same as linked FK relationship. Capitalized. E.g., ‘Rome’ unclear)
Year_of_birth Year ####. E.g., ‘1612’ (From RKD) NO
Year_of_death Year ####. E.g., ‘1612’ (From RKD) NO

Centres_of_activity City 1 | City 2 | City 3 | etc. (Take from RKD) NO
Rkd_link https://rkd.nl/explore/artists/##### NO

image ??? ??? NO

https://www.gps-coordinates.net/
https://www.gps-coordinates.net/

3

2. Artworks
Column name Content Styling Required?

id PK M###. ‘M-Number’ id. YES
title Title Case. E.g.,’Portrait of a Man’ YES

artist_validity Pick from dropdown menu. Add to ‘DROPDOWNS’
Sheet if you need other options.

NO

artist1_id FK (to Artists.id) Same as linked FK relationship. Integer. YES
artist2_id FK (to Artists.id) Same as linked FK relationship. Integer. NO

place_of_execution FK (to Cities.city) Same as linked FK relationship. Capitalized. E.g.,
‘Rome’

YES (pick 49. Unknown if
uncertain)

date_validity Pick from dropdown menu. Add to ‘DROPDOWNS’
Sheet if you need other options.

NO

date1 Year ####. E.g., ‘1612’ NO
date2 Year ####. E.g., ‘1612’ NO

support Pick from dropdown menu. Add to ‘DROPDOWNS’
Sheet if you need other options.

NO

medium Pick from dropdown menu. Add to ‘DROPDOWNS’
Sheet if you need other options.

NO

height Height in cm. Max. 2 decimals NO
width Width in cm. Max. 2 decimals NO

accession_number NO
museum FK (to Museums.id) Same as linked FK relationship. Integer. YES (pick 49. Unknown if

uncertain)
museum_link URL (preferably permalink) NO

rkd_link URL (preferably permalink) NO
image ??? NO

1. Data
Column name Content Styling Required?

id PK & FK (to Artworks.id) M###. ‘M-Number’ id. Links to the relevant artwork entry. YES
no_of_grounds Integer (1 - ∞) NO

decsription Free text NO
colour_code Capitalized, from support  paint layer. E.g., ‘LY-W’ NO

1 Don’t fill in. Automatically assumes the colour of layer1_colour. NO
2 Don’t fill in. Automatically assumes the colour of layer2_colour. NO
3 Don’t fill in. Automatically assumes the colour of layer3_colour. NO

layer1_colour FK. (to Colours.id) Same as linked FK relationship. Colour-code. E.g., ‘LY’ NO
layer1_composition Free text NO

layer2_colour FK. (to Colours.id) Same as linked FK relationship. Colour-code. E.g., ‘LY’ NO
layer2_composition Free text NO

layer3_colour FK. (to Colours.id) Same as linked FK relationship. Colour-code. E.g., ‘LY’ NO
layer3_composition Free text NO

reliability Pick between 1-5 NO
sample Pick from dropdown menu. Add to ‘DROPDOWNS’ Sheet if you

need other options. (Choices: YES/NO/UNCLEAR)
NO

microscopy NO
elem_analysis NO

sample_location Free text NO
sample_name_1 Free text NO
sample_link_1 URL (if existing) NO

sample_name_2 Free text NO
sample_link_2 URL NO

researchers Free text NO
source Free text NO

dttg_new_research Pick from dropdown menu. Add to ‘DROPDOWNS’ Sheet if you
need other options. (Choices: YES/NO/UNCLEAR)

NO

notes Free text NO

4

Backend II: Django [SQL & Python]

Introduction
After some market-research/literature review and discussions with computer science/database professionals
– and taking in mind the researcher’s experience with Python – it was decided to use the free and open
source back-end web framework Django. It is focused on easing the creation of the backend of complex,
database-driven websites using python. It is mostly focused on a ‘don’t repeat yourself’ principle,
encouraging the coder to use less code, instead creating templates through which data can repeatedly be
presented in a similar fashion. Python is used all throughout, for settings, files, and data models.

In practice, this means that we’ve developed a backend and frontend (full stack) of a website that uses the
database to generate both webpages and functions the user can browse through.

Set-up
This is just a basic short explanation of the developed system that presents the user with the data in an interactive fashion. For a deeper

understanding, it would probably be necessary to delve into python/html/css and Django-specific terminology through other online resources.
More questions? Reach out to: p.j.c.vanlaar@gmail.com

Data-structure
Django runs on an SQL database. SQL stands for Structured Query Language, and is used for relational
databases. In essence that means: a collection of tables with defined relationships connecting them (foreign
keys).

In the file tree of the Django project, this database is kept in a file called ‘db.sqlite3’. However, when first
creating a Django project, this database will be completely empty. To be able to fill it, we first needed to
define the different tables in the database. Within Django, these are referred to as the different ‘Models’.
Within the project tree they are defined in the following file: ‘dttg_new/data/models.py’.

In it, the 6 tables (as presented in the Excel) are defined as 6 separate Django models. This ensures we can
define properly the type of accepted input (e.g. text, numeric, image) as well as the relationship from a
given field to another table.

Data input / Updating the database
To ensure researchers can just keep using the easy-to-use excel sheets for data-input. I’ve written a python
script that automatically runs through the excel sheet and inputs the data into the db.sqlite3 file. Following
the methodology/standard also used in the IPERION-CH project – it was decided to delete the entire
database with every update. In practice this will mean that 1 main excel sheet will remain the ‘true’ updated
version. This developed Django project is simply a presentation of that data, and should not be considered
the true back-up of it.

To update the database, export each of the 6 sheets of the excel as a csv and put them in the ‘dttg-
new/data/csv’ folder with the names ‘colours.csv’, ‘cities.csv’, ‘museums.csv’,
‘artists.csv’, ‘artworks.csv’, ‘data.csv’. Then, using a python shell run the relevant .py
scripts in the ‘dttg-new/scripts’ folder. This will delete the current stored data in that model, and
update it with the data provided in the .csv file.

Like entering a new field in the excel, this should happen from back to forth (colours-cities-museums-
artists-artworks-data), to ensure the foreign key relationships are set up correctly. E.g., you can’t enter a
data-entry before the relevant artwork is entered etc.

https://www.djangoproject.com/
mailto:p.j.c.vanlaar@gmail.com

5

It is not necessary to delete all data to update a single model. For example, the colours/cities/museums
models do not (necessarily) have to be updated when a new artwork is added.

URLs & Views
Now that the data is put into the SQL back-end of the Django-project, it is necessary for a user to be able to
interact with it. This happens (mostly) through the ‘urls.py’ and ‘views.py’ files.

urls.py

If a user enters our website and goes to https://domain.com/ , it sends a request to the
‘dttg_new/dttg_new/urls.py’ file. Under the heading urlpatterns it will find the following
function: path(‘’, include(data.urls’)). The first part of this expression (‘’) refers to the
ending of the user-requested URL. The second part, then, dictates what the back-end should do with this
request. In this example, it refers the user to another file: ‘dttg_new/data/urls.py’.

In a similar way, if the user would go to https://domain.com/admin , it would find path(‘admin/’,
admin.site.urls) in the urls.py file, redirecting the user to the admin log-in page.

In the ‘dttg_new/data/urls.py’ file, you can find all the accessible URLs of our webpage. If a user
tries to access a URL that is not listed in this file, they would receive a ‘404-page not found’ error.

The above image shows what needs to happen when a user requests a certain URL. For example, in the case
of the home. The user goes to webpage https://domain.com/ , this file tells Django to redirect to the function
views.about and the webpage has a name called ‘dttg-home’.

views.about refers to another python file: dttg_new/data/views.py. This python file basically
dictates what should happen when a user requests a certain webpage.

Fig. 2: dttg_new/dttg_new/urls.py. Lists the admin page (domain.com/admin), as well as links to

Fig. 3: dttg_new/data/urls.py. Lists all the available URL’s a user can request.

6

So, at this point we have the following trajectory:

A user requests a URL 
Django looks up this URL in the urls.py file 
redirects to a specific view in the views.py file.

views.py

All the URLs in the url.py files, refer to a specific view function within the views.py file.

In its essence, a view can be a simple request-function (request because the user requests something), that
may look like this:

The function simply says: when this URL is being requested, render this request out using the following
file: ‘data/dttg-home.html’. This file is called a template, and can be found in
dttg_new/data/templates/data/dttg-home.html. As you may notice, this refers not to a .py
file anymore, but a .html file: we’ve now moved on from the backend to the frontend.

Other views in views.py are more complex, but shall not be discussed here. Besides the request and
template-file arguments in the function, a third argument ‘context’ can be inserted, which
allows to feed specific information (E.g., data, variables etc.) to the HTML file that can then be used from
within there.
So, at this point we have the following trajectory:

A user requests a URL 
Django looks up this URL in the urls.py file 

Redirects to a specific view in the views.py file 
Redirects to a specific HTML-template in the templates/data folder

Frontend: [HTML, CSS, JS within the Django project]

Intro
The frontend (lay-out, user interface etc.) is not created with python, but instead using a combination of
HTML, CSS, and JS. HTML (HyperText Markup Language) is the standard markup language for web
pages. CSS (Cascading Style Sheet) is the language used to style an HTML document, as it describes how
HTML elements should be displayed. Lastly, JS (JavaScript) allows for using certain scripts within HTML
pages.

In dttg_new/data/static/data/main.css the main lay-out classes and colours are defined.
Changes made in this file (for example a hex-code) will therefore translate to consistent changes all
throughout the website.

Fig. 4: dttg_new/data/views.py. Function that describes what should happen when the user requests the /home/
URL (in urls.py)

7

The HTML templates in dttg_new/data/templates/data/ describe exactly what text, what data,
what files etc. should be presented to the user in what fashion/lay-out.
dttg_new/data/templates/data/base.html is the basis for all these pages, and describes all
features that are constant across all pages. This includes the navigation bar at the top, the colour of the
background, the footer etc. The other HTMLs therefore usually start with saying {% extends
‘data/base.html’ %}

Without going into the details of HTML coding, if something needs to be changed on one of the pages
(E.g., an explanation), it shouldn’t be too hard to find the corresponding text in the .html file where you
can simply edit the text!

User interface/website
The list of pages that the user can access is the following:

- Informational pages
o dttg-home.html (Home page that welcomes the user, and should explain the functionality

of the website/database)
o dttg-about.html (Basically copied the NICAS project-page information, added team-

members and institutions etc.)
o db-info.html (Info on the colour system, reliability system, and data collection)

- Artists
o artist-list.html (lists all artists as cards)
o artist-detail.html (detailed page of a single artist)

- Museums
o museum_list.html (lists all museums as cards)
o museum_detail.html (detailed page of a single museum)

- City of execution
o city-of-execution-overview.html (lists all cities of execution)
o city_detail.html (detailed page of a single city of execution)

- Data entries/Artworks
o data_list.html (lists all artworks in the database)
o data_detail.html (detailed page of a single artwork)
o table_simple_query.html (table view of data, with simple search function)
o table_advanced_query.html (table view of data, with advanced search function)

Find an overview in video-format here.

The built website/frontend thus basically allows the user to quickly glance at entries sorted on artist, city of
execution, and museum, as well as provides them with a more elaborate table view in which more complex
queries can be asked. These can then be exported as .csv to (for example) enter into more sophisticated
data-visualisation tools.

https://youtu.be/T8i2gr6Ijq4

8

Using the System Locally

To boot up the system locally, a couple things are required to set up:
• A terminal;
• An easy-to-navigate text-editor;
• Python (3.9.10);

• Virtual environment;
• Python extensions, including Django.

Terminal
On windows, it is recommended to download a terminal from an external party, as the built-in windows
terminal is not as advanced. The one I recommend is Git BASH.

On mac, the internal terminal suffices.

Text-editor
Any text editor will work for opening and editing the different .py and .html files. However, native text
editors as Notepad etc. do not have any automatic formatting options, which is very useful for interpreting
and editing code. Therefore, I recommend installing SublimeText. This text-editor allows you to open the
entire file tree, and also automatically colours certain parts of code, making it more legible.

Python
Python is the basis of the entire project. I recommend downloading the same version as I used, to prevent
any compatibility issues: Python 3.9.10 .

Virtual environment
Instead of installing the required Python extensions on your computer, it is better practice to create a
“virtual environment”. This allows for working project-based, keeping different projects separated such that
extensions don’t start interfering with one another.

To do this, follow these instructions:

MAC WINDOWS
In your terminal, write the following to install the virtual environment package:

python3 -m pip install virtualenv pip install virtualenv

Now, navigate to the folder in which you want to save your virtual environment, using the cd (change
directory) command. E.g. cd Desktop. Then, create a virtual environment using the following

command.

python3 -m virtualenv
NAME_OF_YOUR_ENVIRONMENT

Python -m virtualenv
NAME_OF_YOUR_ENVIRONMENT

Stay in the same directory. To boot the venv up, use the following command:

source NAME/bin/activate source NAME/Scripts/activate

In your terminal, the venv should now appear in between closed brackets, indicating the boot up was
successful!

https://gitforwindows.org/
https://www.sublimetext.com/
https://www.python.org/downloads/release/python-3910/

9

Python extensions
The requirements.txt file indicates what python packages are required to run the Django project.
These are:

• Django
• Pillow
• django-crispy-forms

• django-extensions
• django-filter
• django-htmx

To install these packages, use the pip install function from within your terminal (while your venv is
running). On Mac that is: python3 -m pip install PACKAGE_NAME; On windows: pip install
PACKAGE_NAME. Use the package names capitalized as above.

When done, type python3 pip list (Mac) or pip list (Windows) to check whether they are
installed properly. This will also list their versions.

Boot-up
Now, it’ s time to boot up our system!

Starting from scratch, the steps are:
1. Open up the project in SublimeText by dragging the folder into the software.
2. Boot up your terminal.
3. Navigate to the virtual environment and boot it up
4. Navigate to the project folder
5. Type python3 manage.py runserver (Mac) or python manage.py runserver (Windows)
6. This will now boot up the system on a local server. In the terminal you will see you IP-address (e.g.

1.270.0.0.1:8000). The part behind the colon is the so-called ‘port-number’. You need this to access
the webpage.

7. Go to any browser and type in localhost:port_number (e.g. localhost:8000). This will open up the
webpage for you.

8. To stop running the server, which is recommended before you close the terminal, press Ctrl+C.
9. DONE!

https://pypi.org/project/Django/
https://pypi.org/project/Pillow/
https://pypi.org/project/django-crispy-forms/
https://pypi.org/project/django-extensions/
https://pypi.org/project/django-filter/
https://pypi.org/project/django-htmx/

	Backend I: Excel sheet
	Data input
	6. Colours
	5. Cities
	4. Museums
	3. Museums
	2. Artworks
	1. Data

	Backend II: Django [SQL & Python]
	Introduction
	Set-up
	Data-structure
	Data input / Updating the database
	URLs & Views

	Frontend: [HTML, CSS, JS within the Django project]
	Intro
	User interface/website
	Admin

	Using the System Locally
	Terminal
	Text-editor
	Python
	Virtual environment
	Python extensions
	Boot-up

	Hosting/Presentation
	GitHub
	Required python packages
	Hosting options?

	Visualisation ideas
	Link between the art-market boom and the use of coloured grounds.

