10,7 THE
GROLIND

Contents

BaCKENA [z EXCOI SNEET cuutiuirretieirteteistesteeetestesestetesestestesestestesessassesessessesessassesessassasessassesensassesessessesessassesessensesessans
DA INPUL ettt ettt et bbbt bbb s bbb et s b s Rt b e Rt b s Rt eb e b nsnes
6. COLOUTS ..cveuiteieeieteteeete et te et ettt e b e ete st e e e se st e e s et esee s et esaes et eseesasseseesassessesantasaesassessesansassesanseneesansensesansan

5 CILIES wverrerreeeereesserssessseseeseesseasseessesssessesseesseessesssesssesssesssesseesseesseessesssesssesseesseessesssesssessesssesseesseessesssessees

A, MIUSEUITIS «.eeuuvereureeneeesreesseesesseesssesssseesssessssesssessssessssessssessssessssessssessssessssessssessssessssessssessssessssessssasssessssassnes

3. MIUSEUITIS ceeeuuveeeureerrerereeeeeseseeeeeseseeseesssessssesessessssessssessssessssessssesssessssesssessssessssessssessssesssessssassnessssassnes

2 ATEWOTKS. v veeteteeeetecteestect et teste e te st et ete st et ete st e ee s et e st e b et esees et eseesasseseesassastesansaseesansantesansaneesansaneesarsansesarsan

Backend I1: DJANGO [SQL & PYTNON] ueuiereeteeererteesresteressessesessessesessessessssessesessassessssessessssassessesessesessessessssassessssessessssans
TNETOUCEION 1vevventeenticneiciieetteete et et et e et ee e esteeteesbeestee st esse e seesseessesssesssessessseasesssesssenssenseersesssesssenssenssenseensesssens

Data input / Updating the database........ccccceuvurivieevcieriininininiicccineccereetceesesessaseseeesesesesssenes
URLS & VIEWS .ttt bbb s bbb bbb bbb bbb aan

Using the System LOCally ..ottt sis

LS 50000 0T SRS

HOSHING/PIESENTALION ...vvivuiriiiiiiitcitc e bbbt
GIEHUD .ttt
Required python packages........iiiiiiniiciii e

057 THE

[EROUND

Backend I: Excel sheet

To keep the method for inputting new data as simple and familiar as possible, it was decided to keep using
an excel-file as the functional backend. The original one-sheet excel file was split up into 6 separate sheets,
that mimic the eventual SQLite database behind the website:

1. Data

2. Artworks
3. Artists

4. Museums
5. Cities

6. Colours

Splitting up the data like this makes the sheet more legible. The colour of the columns dictates the
(possible) relationship of a given field to a field in another sheet (Fig.1):

A B C D E

id title artist_validity artist1_id artist2_id
1 i - v 5 5
8 EMDO? The three youths in the fiery furnace 84

Fig. 1: Excerpt of the [2. Arfworks] input sheet of the excel

Primary key (PK) | A primary key (PK) is used as a unique identifier to quickly parse data within the
table. A table cannot have more than one PK.

A primary key’s main features are:
e It must contain a unique value for each row of data.
e It cannot contain null values.

e Every row must have a PK value.

Foreign key (FK) A foreign key (FK) is a field that refers to the PK in another table. By using an FK,
different tables can be linked to one another.

In this example. The Artworks sheet is linked to the Artzsts sheet through columns
D and E, that link to the PK (in this case Artist id) in the Artists sheet. Instead of
having to fill in the name ‘Rembrandt’ >200 times we simply input the id

referencing him. The Artists sheet then contains the rest of the relevant
information (birthdate, place of birth etc), which limits cluttering of the Artworks
sheet.

Normal field These are simply normal fields unique to this sheet, and contain information on

the relevant entry.

Data inpuf

To input a new data-entry, we recommend working your way from back to front (starting at sheet 6, ending

at sheet 1). This is to ensure all the FK relationships are set up properly.

6. Colours
Column name Content Styling Required?
id PK. Abbreviation of the colour-name Capitalized., E.g., ‘DBI’ for ‘Dark black’ YES
colour_name First term capitalized. E.g., ‘Dark black’ YES
hex_code Used for making renders on the Standard hex-code formatting. E.g., YES
front-end. #000000
group Allows for grouping of data by colour Capitalized. E.g., ‘Black’ YES

group.

Most likely, this sheet of the database will remain untouched. It lists the colour-system devised within the

DttG project, with relevant hex-codes.

5. Cities
Column name Content Styling Required?
city PK. City name. Capitalized. E.g., ‘Rome’ YES
country Allows for grouping of data by Capitalized. E.g., ‘Italy’ NO
country.
continent Allows for grouping of data by Capitalized. E.g., ‘Europe’ NO
continent.
latitude Allows for making geographical data Standard lat/lon formatting with 7 NO
longitude plots. e.g., use https://www.gps- decimals. E.g., 55.6867243

coordinates.net/

This table needs to be filled in properly to ensure FK of other sheets can link to it. There’s a high chance

that your desired city is already added to the database. Fields that link to this sheet are the following;:

¢ Museum.city
e Artists.place_of_birth

e Artists.place_of death

e Artworks.place_of_execution

E.g., you will only be able to enter your artwork’s place of execution if the city is already filled in in the

Cities sheet.

4. Museums

Place_of_birth
Place_of_death
Year_of_birth
Year_of_death
Centres_of_activity
Rkd_link

image ?7??

FK (to Cities.city)
FK (to Cities.city)

(From RKD)

Same as linked FK relationship. Capitalized. E.g., ‘Rome’
Same as linked FK relationship. Capitalized. E.g., ‘Rome’
Year ####. E.g., ‘1612’ (From RKD)

Year ####. E.g., ‘1612’ (From RKD)

City 1 | City 2 | City 3 | etc. (Take from RKD)
https://rkd.nl/explore/artists/#####

7??

Column name Content Styling Required?
id PK Integer, automatically increments with 1. YES
museum_name Capitalized. E.g., ‘Chatsworth House Trust’ YES
city FK (to Cities.city) Same as linked FK relationship. Capitalized. NO
E.g., ‘Rome’
website Museum home-page https://example-website.org/ NO
3. Museums
Column name Content Styling Required?
id PK Integer, automatically increments with 1. YES
full_name LAST NAME, First name. E.g., ‘"ANTHONISZ, Aert’ YES
other_names LAST NAME, First name | LAST NAME, First name | etc. NO

YES (pick unknown if
unclear)

NO

NO

NO

NO

NO

https://www.gps-coordinates.net/
https://www.gps-coordinates.net/

057 THE

|GROLND
2. Artworks

Column name Content Styling Required?
id PK M##t. ‘M-Number’ id. YES
title Title Case. E.g.,’Portrait of a Man’ YES
artist_validity Pick from dropdown menu. Add to ‘DROPDOWNS’ NO

Sheet if you need other options.

artistl_id FK (to Artists.id) Same as linked FK relationship. Integer. YES
artist2_id FK (to Artists.id) Same as linked FK relationship. Integer. NO

place_of_execution

FK (to Cities.city)

Same as linked FK relationship. Capitalized. E.g.,
‘Rome’ uncertain)

YES (pick 49. Unknown if

date_validity Pick from dropdown menu. Add to ‘DROPDOWNS’ NO
Sheet if you need other options.
datel Year #iit. E.g., ‘1612’ NO
date2 Year #iHi. E.g., ‘1612’ NO
support Pick from dropdown menu. Add to ‘DROPDOWNS’ NO
Sheet if you need other options.
medium Pick from dropdown menu. Add to ‘DROPDOWNS’ NO
Sheet if you need other options.
height Height in cm. Max. 2 decimals NO
width Width in cm. Max. 2 decimals NO
accession_number NO
museum FK (to Museums.id) Same as linked FK relationship. Integer. YES (pick 49. Unknown if
uncertain)
museum_link URL (preferably permalink) NO
rkd_link URL (preferably permalink) NO
image ?7?? NO
1. Data
Column name Content Styling Required?
id PK & FK (to Artworks.id) M##t. ‘M-Number’ id. Links to the relevant artwork entry. YES
no_of_grounds Integer (1-«) NO
decsription Free text NO
colour_code Capitalized, from support = paint layer. E.g., ‘LY-W’ NO
1 Don’t fill in. Automatically assumes the colour of layerl_colour. NO
2 Don’t fill in. Automatically assumes the colour of layer2_colour. NO
3 Don’t fill in. Automatically assumes the colour of layer3_colour. NO
layerl_colour EK. (to Colours.id) Same as linked EK relationship. Colour-code. E.g., ‘LY’ NO
layerl_composition Free text NO
layer2_colour FK. (to Colours.id) Same as linked FK relationship. Colour-code. E.g., ‘LY’ NO
layer2_composition Free text NO
layer3_colour EK. (to Colours.id) Same as linked EK relationship. Colour-code. E.g., ‘LY’ NO
layer3_composition Free text NO
reliability Pick between 1-5 NO
sample Pick from dropdown menu. Add to ‘DROPDOWNS’ Sheet if you NO
microscopy need other options. (Choices: YES/NO/UNCLEAR) NO
elem_analysis NO
sample_location Free text NO
sample_name_1 Free text NO
sample_link_1 URL (if existing) NO
sample_name_2 Free text NO
sample_link_2 URL NO
researchers Free text NO
source Free text NO
dttg_new_research Pick from dropdown menu. Add to ‘DROPDOWNS’ Sheet if you NO

notes

need other options. (Choices: YES/NO/UNCLEAR)
Free text

NO

057 THE

[EROUND

Backend II: Djiango [SQL & Python]

Infroduction

After some market-research/literature review and discussions with computer science/database professionals
— and taking in mind the researcher’s experience with Python — it was decided to use the free and open
source back-end web framework Django. It is focused on easing the creation of the backend of complex,
database-driven websites using python. It is mostly focused on a ‘don’t repeat yourself* principle,
encouraging the coder to use less code, instead creating templates through which data can repeatedly be
presented in a similar fashion. Python is used all throughout, for settings, files, and data models.

In practice, this means that we’ve developed a backend and frontend (full stack) of a website that uses the

database to generate both webpages and functions the user can browse through.

Set-up

This is just a bastc short explanation of the developed system that presents the user with the data in an interactive fashion. For a deeper
understanding, it would probably be necessary to delve into python/html/css and Django-specific terminology through other online resources.

More questions? Reach out to: p.j.c.vanlaar@gmail.com

Data-structure

Django runs on an SQL database. SQL stands for Structured Query Language, and is used for relational
databases. In essence that means: a collection of tables with defined relationships connecting them (foreign
keys).

In the file tree of the Django project, this database is kept in a file called ‘db.sqlite3’. However, when first
creating a Django project, this database will be completely empty. To be able to fill it, we first needed to
define the different tables in the database. Within Django, these are referred to as the different ‘Models’.
Within the project tree they are defined in the following file: “dttg_new/data/models._py”.

In it, the 6 tables (as presented in the Excel) are defined as 6 separate Django models. This ensures we can
define properly the type of accepted input (e.g. text, numeric, image) as well as the relationship from a
given field to another table.

Data input / Updafting the database

To ensure researchers can just keep using the easy-to-use excel sheets for data-input. I've written a python
script that automatically runs through the excel sheet and inputs the data into the db.sqlite3 file. Following
the methodology/standard also used in the IPERION-CH project — it was decided to delete the entire
database with every update. In practice this will mean that 1 main excel sheet will remain the ‘true’ updated
version. This developed Django project is simply a presentation of that data, and should not be considered
the true back-up of it.

To update the database, export each of the 6 sheets of the excel as a csv and put them in the “dttg-
new/data/csv’ folder with the names “colours.csv’, “cities.csv’, “museums.csv’,
‘artists.csv’, “artworks.csv’, “data.csv’. Then, using a python shell run the relevant . py
scripts in the “dttg-new/scripts’ folder. This will delete the current stored data in that model, and
update it with the data provided in the .csV file.

Like entering a new field in the excel, this should happen from back to forth (colours-cities-museums-
artists-artworks-data), to ensure the foreign key relationships are set up correctly. E.g., you can’t enter a
data-entry before the relevant artwork is entered etc.

https://www.djangoproject.com/
mailto:p.j.c.vanlaar@gmail.com

TOS_ 7 THE

[EROUND

It is not necessary to delete all data to update a single model. For example, the colours/cities/museums

models do not (necessarily) have to be updated when a new artwork is added.

URLs & Views
Now that the data is put into the SQL back-end of the Django-project, it is necessary for a user to be able to
interact with it. This happens (mostly) through the “urls._py” and “views.py~ files.

| urls.py |

If a user enters our website and goes to htps://domain.com/ , it sends a request to the
“dttg_new/dttg_new/urls._py” file. Under the heading ur Ipatterns it will find the following
function: path(“”, include(data.urls”)). The first part of this expression (“ ”) refers to the
ending of the user-requested URL. The second part, then, dictates what the back-end should do with this
request. In this example, it refers the user to another file: “dttg_new/data/urls.py”’.

urlpatterns [
path('", include('data.urls’)),

path('admin/', admin.site.urls),

Fig. 2: dttg_new/dttg_new/urls.py. Lists the admin page (domain.com/admin), as well as links to

In a similar way, if the user would go to https://domain.com/admin , it would find path(“admin/”,
admin.site.urls) intheurls._py file, redirecting the user to the admin log-in page.

In the “dttg_new/data/urls._py” file, you can find all the accessible URLs of our webpage. If a user
tries to access a URL that is not listed in this file, they would receive a ‘404-page not found’ error.

urlpatterns [
path("", views.home, name-'dttg-home"'),
path("about/", views.about, name='dttg-about'),
path("artists/", ArtistListView.as view(), r),
path(artists/<int:pk>/", views.ArtistDetai 5 view e-'artists-detail’),
path("entries/", views.DatalistView.as view(), iew),
path(“entries/<stripk>/", views.DataDetailView.as view(), name-‘data-detail'),
path("entries-table-adv/', views.data_table_advanced, name-'data-table-adv'),
path("entries-table-adv/export_csv', views.csv_export_adv, ‘csv-export-adv'),

path("entries-table-simple/’, views.data_table_simple, nam ata-table-simple’),
path(“entries-table-simple/export-csv®, views.csv_export_simple, name-'csv-export-simple’

path("museums/", views.MuseumListView.as view(), museums-overview'),

path("museums/<int:pk>/", views.MuseumDetailView.as view(), name-'museums-detail'),

path("db_info/", views.db_info, nc "database-info"),

path("city-of-execution/", views.city_of_execution_overview, n “city-of-execution-overview'),
path("city-of-execution/<str:pk>/", views.city_of_execution_detail.as_view(), name='city-of-execution-detail’),

Fig. 3: dttg_new/data/urls.py. Lists all the available URL’s a user can request.

The above image shows what needs to happen when a user requests a certain URL. For example, in the case
of the home. The user goes to webpage https://domain.com/ , this file tells Django to redirect to the function
views.about and the webpage has a name called “dttg-home~.

views.about refers to another python file: dttg_new/data/views._py. This python file basically
dictates what should happen when a user requests a certain webpage.

057 THE

[EROUND

So, at this point we have the following trajectory:

A user requests a URL >
Django looks up this URL in the urls.py file >
redirects to a specific view in the views.py file.

| views.py

All the URLs in the url .py files, refer to a specific view function within the views.py file.

In its essence, a view can be a simple request-function (request because the user requests something), that

may look like this:

def home(request):

render(request, "data/dttg-home.html")

Fig. 4: dttg_new/data/views.py. Function that describes what should happen when the user requests the /home/
URL (in urls.py)

The function simply says: when this URL is being requested, render this request out using the following
file: “datasdttg-home.html . This file is called a template, and can be found in
dttg_new/data/templates/datasdttg-home.html. As you may notice, this refers not to a .py

file anymore, but a .html file: we’ve now moved on from the backend to the frontend.

Other views in Views.py are more complex, but shall not be discussed here. Besides the request and
template-Tile arguments in the function, a third argument “context” can be inserted, which
allows to feed specific information (E.g., data, variables etc.) to the HTML file that can then be used from
within there.

So, at this point we have the following trajectory:

A user requests a URL >
Django looks up this URL in the urls.py file >
Redirects to a specific view in the views.py file >
Redirects to a specific HTML-template in the templates/data folder

Frontend: [HTML, CSS, |S within the Django project]

Intro

The frontend (lay-out, user interface etc.) is not created with python, but instead using a combination of
HTML, CSS, and JS. HTML (HyperText Markup Language) is the standard markup language for web
pages. CSS (Cascading Style Sheet) is the language used to style an HTML document, as it describes how
HTML elements should be displayed. Lastly, JS (JavaScript) allows for using certain scripts within HTML

pages.

In dttg_new/data/static/data/main.css the main lay-out classes and colours are defined.
Changes made in this file (for example a hex-code) will therefore translate to consistent changes all
throughout the website.

057 THE

[EROUND

The HTML templates in dttg_new/data/templates/data/ describe exactly what text, what data,
what files etc. should be presented to the user in what fashion/lay-out.
dttg_new/data/templates/datasbase._html is the basis for all these pages, and describes all
features that are constant across all pages. This includes the navigation bar at the top, the colour of the

background, the footer etc. The other HTMLs therefore usually start with saying {% extends
“data/base_html” %}

Without going into the details of HTML coding, if something needs to be changed on one of the pages
(E.g., an explanation), it shouldn’t be too hard to find the corresponding text in the .html file where you
can simply edit the text!

User interface/website
The list of pages that the user can access is the following:
- Informational pages
0 dttg-home.html (Home page that welcomes the user, and should explain the functionality
of the website/database)
0 dttg-about.html (Basically copied the NICAS project-page information, added team-
members and institutions etc.)
0 db-info.html (Info on the colour system, reliability system, and data collection)
- Artists
o artist-list.html (lists all artists as cards)
0 artist-detail.html (detailed page of a single artist)
- Museums
0 museum_list.html (lists all museums as cards)
0 museum_detail.html (detailed page of a single museum)
- City of execution
0 city-of-execution-overview.html (lists all cities of execution)
0 city_detail.html (detailed page of a single city of execution)
- Data entries/Artworks
data_list.html (lists all artworks in the database)
data_detail.html (detailed page of a single artwork)
table_simple_query.html (table view of data, with simple search function)

O O O O

table_advanced_query.html (table view of data, with advanced search function)
Find an overview in video-format here.

The built website/frontend thus basically allows the user to quickly glance at entries sorted on artist, city of
execution, and museum, as well as provides them with a more elaborate table view in which more complex
queries can be asked. These can then be exported as .csv to (for example) enter into more sophisticated
data-visualisation tools.

https://youtu.be/T8i2gr6Ijq4

057 THE

[EROUND

Using the System Locally

To boot up the system locally, a couple things are required to set up:
e A terminal; e Virtual environment;
e An easy-to-navigate text-editor; e Python extensions, including Django.
e DPython (3.9.10);

Terminal
On windows, it is recommended to download a terminal from an external party, as the built-in windows

terminal is not as advanced. The one I recommend is Git BASH.

On mag, the internal terminal suffices.

Text-edifor
Any text editor will work for opening and editing the different .py and .html files. However, native text

editors as Notepad etc. do not have any automatic formatting options, which is very useful for interpreting
and editing code. Therefore, I recommend installing SublimeText. This text-editor allows you to open the

entire file tree, and also automatically colours certain parts of code, making it more legible.

Python
Python is the basis of the entire project. I recommend downloading the same version as I used, to prevent

any compatibility issues: Python 3.9.10 .

Virtual environment
Instead of installing the required Python extensions on your computer, it is better practice to create a
“virtual environment”. This allows for working project-based, keeping different projects separated such that

extensions don’t start interfering with one another.

To do this, follow these instructions:

MAC WINDOWS

In your terminal, write the following to install the virtual environment package:

python3 -m pip install virtualenv pip install virtualenv

Now, navigate to the folder in which you want to save your virtual environment, using the cd (change
directory) command. E.g. cd Desktop. Then, create a virtual environment using the following

command.

python3 -m virtualenv Python -m virtualenv
NAME_OF_YOUR_ENVIRONMENT NAME_OF_YOUR_ENVIRONMENT

Stay in the same directory. To boot the venv up, use the following command:

source NAME/bin/activate source NAME/Scripts/activate

In your terminal, the venv should now appear in between closed brackets, indicating the boot up was

successful!

https://gitforwindows.org/
https://www.sublimetext.com/
https://www.python.org/downloads/release/python-3910/

057 THE

[EROUND

Python extensions
The requirements. txt file indicates what python packages are required to run the Django project.

These are:
e Django ¢ django-extensions
e Pillow e django-filter
e django-crispy-forms e django-htmx

To install these packages, use the pip install function from within your terminal (while your venv is
running). On Mac that is: python3 -m pip install PACKAGE_NAME; On windows: pip install
PACKAGE_NAME. Use the package names capitalized as above.

When done, type python3 pip list (Mac)orpip list (Windows) to check whether they are

installed properly. This will also list their versions.

Boof-up
Now, it’ s time to boot up our system!

Starting from scratch, the steps are:
1. Open up the project in SublimeText by dragging the folder into the software.
Boot up your terminal.
Navigate to the virtual environment and boot it up
Navigate to the project folder
Type python3 manage.py runserver (Mac) or python manage.py runserver (Windows)

SN

This will now boot up the system on a local server. In the terminal you will see you IP-address (e.g.

1.270.0.0.1:8000). The part behind the colon is the so-called ‘port-number’. You need this to access

the webpage.

7. Go to any browser and type in localhost:port_number (e.g. localhost:8000). This will open up the
webpage for you.

8. To stop running the server, which is recommended before you close the terminal, press Ctrl+C.

9. DONE!

https://pypi.org/project/Django/
https://pypi.org/project/Pillow/
https://pypi.org/project/django-crispy-forms/
https://pypi.org/project/django-extensions/
https://pypi.org/project/django-filter/
https://pypi.org/project/django-htmx/

	Backend I: Excel sheet
	Data input
	6. Colours
	5. Cities
	4. Museums
	3. Museums
	2. Artworks
	1. Data

	Backend II: Django [SQL & Python]
	Introduction
	Set-up
	Data-structure
	Data input / Updating the database
	URLs & Views

	Frontend: [HTML, CSS, JS within the Django project]
	Intro
	User interface/website
	Admin

	Using the System Locally
	Terminal
	Text-editor
	Python
	Virtual environment
	Python extensions
	Boot-up

	Hosting/Presentation
	GitHub
	Required python packages
	Hosting options?

	Visualisation ideas
	Link between the art-market boom and the use of coloured grounds.

